COURSE INFORMATION							
Course Title	Code	Semester	L+P Hour	Credits	ECTS		
ADVANCED TOPICS IN SYSTEMS ARCHITECTURE	CSE 620	1	3 + 0	3	10		

Prerequisites

Language of Instruction	English
Course Level	Graduate
Course Type	Elective
Course Coordinator	
Instructors	Gürhan Küçük
Assistants	
Goals	The aim of this course is to provide students with knowledge and abilities to do research in Systems Architecture area.
Content	Advanced and recent research issues in Systems Architecture.

Course Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
Ability to conduct experiments, gather data, analyze and interpret results for investigating engineering solutions to systems architecture problems.	4,5,8	1,2	A,B
Ability to understand a published work, to investigate its cons and pros and to present.	2,3,8	1,2	B,C
Ability to write a research paper.	4,5,6,8	1,2	A,D

Teaching Methods:	1: Lecture, 2: Question-Answer, 3: Lab
Assessment Methods:	A: Experiment, B: Homework, C: Presentation, D: Term Project

COURSE CONTENT					
Week	Topics	Study Materials			
1	Introduction				
2	Research areas: SMTs, CMPs, GPUs, Memory, Security, Power/Energy, Complexity, Performance				
3	Paper discussion – I				
4	Paper discussion – II				
5	Paper discussion – III				
6	Paper discussion – IV				
7	Area specialization and focusing on selected areas and topics				
8	Experimental methodology				
9	Deep analysis and simulation of the selected studies				
10	Research proposal, analysis and design details				
11	Implementation of the proposed method				
12	Tests and collection of the test results				
13	Paper write-up				
14	Paper presentation				

RECOMMENDED SOURCES				
Textbook				
Additional Resources	Research papers from the recent top conferences are studied.			

MATERIAL SHARING				
Documents				
Assignments				
Exams				

ASSESSMENT					
IN-TERM STUDIES	NUMBER	PERCENTAGE			
Mid-terms					
Quizzes					
Assignment (Paper critiques)	4	20			
Term Project and Presentation	1	80			
Total		100			
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		0			
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		100			
Total		100			

COURSE CATEGORY

Expertise/Field Courses

COURSE'S CONTRIBUTION TO PROGRAM								
No	Program Learning Outcomes		Contributio		Contributio			on
		1	2	3	4	5		
1	Ability to understand and use basic sciences, mathematics and engineering sciences in a high level.							
2	Possession of wide and deep knowledge in the field of Computer Science and Engineering, including the latest developments.					x		
3	Ability to reach the new information in the field of Computer Science and Engineering and having high-level competence in necessary methods and skills to make the research by apprehending the new information.					x		
4	Ability to bring an innovation that provides different initiatives to the field of Computer Engineering; develop a new approach, method, design, application or apply a present method in a different field.					x		
5	Ability to perceive an original research process independently, and design, implement, conclude and lead the process.					x		
6	Ability to contribute to the literature by publishing the whole scientific research and development efforts he/she has carried out in the field of expertise.					x		
7	Ability to comprehend scientific, technological, social and cultural developments, and convey them to society with scientific impartiality and ethical responsibility.							
8	Ability to do critical analysis, synthesis and evaluation of ideas and developments in the field of Computer Engineering.					x		

9	Ability to communicate effectively in oral and written ways with the employees in the area of Computer Engineering and wider scientific and social communities, to communicate and discuss in advanced level of written, oral and visual ways by using a foreign language in at least European Language Portfolio C1 General Level.
10	Ability to evaluate scientific, technological, social and cultural developments and to transmit these developments to society with scientific objectivity and a sense of ethic responsibility.

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION

Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (Excluding the exam week: 13x Total course hours)	14	3	42
Hours for off-the-classroom study (Pre-study, practice)	14	6	84
Mid-terms			
Homework	5	5	25
Term Project and Presentation		100	100
Total Work Load			251
Total Work Load / 25 (h)			10
ECTS Credit of the Course			10